

Exercises on Neural Networks for Natural Language Processing

Ion Androutsopoulos, 2017–18

Submit as a group of 3–4 members a report for exercise 10 (max. 5 pages, PDF format).

Include in your report all the required information, especially experimental results. Do

not include code in the report, but include a link to a shared folder or repository (e.g. in

Dropbox, GitHub, Bitbucket) containing your code.

1. Show that a Perceptron (single neuron) with (i) a sign activation function or (ii) a sigmoid

activation function is a linear separator. (iii) Show that a two-level network of Perceptrons

(like the one we used to implement the XOR gate) can learn any logical function. Hint: at the

first level, use an AND gate for each row of the logical function’s truth table; at the second

level, use an OR gate. (iv) Consider a training dataset for binary classification (classes: true,

false) and Boolean features. Explain why a two-level Perceptron network, like the one of the

previous question, with one first-level gate per training instance can learn the training dataset

perfectly, but may not perform well on fresh test data.

2. (i) We wish to train a (single) Perceptron to separate

the instances of the two classes (black and white dots,

inside and outside of a circle) of the figure on the right.

There are only two (real-valued) features, corresponding

to the two axes. Explain why the Perceptron cannot learn

to correctly separate the two classes using the current

two features.

Answer: The Perceptron is a linear classifier, i.e., it
learns a point (for one feature), a straight line (for two

features), a plane (for three features), or more generally
a hyper-plane (for more features), and classifies unseen

instances by examining if they fall above or below the hyper-plane. The dataset of the figure

is not linearly separable with the current two features, i.e., there is no straight line that
separates the black from the white dots. Hence, a single Perceptron cannot learn to separate

the two classes with the current features.

(ii) Propose a mapping from the feature vector of each instance to a single real number (a

single real-valued feature), so that the new (single) feature will allow the Perceptron to

correctly separate the two classes.

Answer: We can represent each instance by its distance from the center of the circle. Then all

the instances will be along the axis of the new, single feature (distance from the center), the

black dots will be on the left of the value that corresponds to the radius (approximately 1),
and the white dots will be on the right of the radius value. With the new (single feature)

representation, the classes are linearly separable, hence the Perceptron can learn to
correctly separate them.

3. (i) Two students are discussing how the Perceptron (single neuron) relates to a logistic

regression classifier. The first student claims that a (binary) logistic regression classifier is the

same as a (single neuron) Perceptron with a sigmoid activation function. To support her view,

she wrote down the formulae that compute the output of the Perceptron and the probability

that the logistic regression classifier assigns to the positive class, in both cases given an input

vector �⃗�. Write down the formulae. What do they show?

Answer: The output of the Perceptron with a sigmoid activation function is:

Image from the book of Russel & Norvig; see

references in the slides.

)1/(1)()(xw

ll exwxw

The probability that the logistic regression classifier assigns to the positive class is:

)1/(1)|(xwexcP

The formulae show that if we use the same weights �⃗⃗⃗�, the output of the Perceptron will be the
same as the probability of the positive class of logistic regression, which seems to agree with

the claim of the first student.

(ii) The second student, however, responded that the Perceptron and logistic regression learn

different weights, even if they use the same training dataset, the same initial weights, and the

same optimizer. To support her claim, she wrote down the weight update rules of the

Perceptron (with sigmoid activation function, slide 15) and logistic regression (with stochastic

gradient ascent). Write the update rules. What do they show?

Answer: The weight update rule of the Perceptron (with sigmoid activation function) is:

() () () () ()() (1 ()) (())
l

i i i i i

l lw w w x w x t w x x

The weight update rule of logistic regression (with stochastic gradient ascent, without

regularization) is:

() () ()[(|)]i i i

l l lw w t P c x x

The update rules are indeed different. This is because the Perceptron that we considered in

the slides tries to minimize the squared error loss, whereas logistic regression tries to
minimize the cross-entropy (or to maximize the conditional log-likelihood) of the training

data. Hence, the second student is right, that in general the Perceptron will learn different

weights than logistic regression. However, if we used the cross-entropy loss in the Perceptron
too (and the same regularization and optimizer), we would come up with the same update

rules, which would agree with the first student’s opinion.

4. In the following network, all the neurons use a sign activation function with a threshold of

0, i.e., 𝛷(𝑥) = 1 if 𝑥 ≥ 0, 𝛷(𝑥) = −1 if 𝑥 < 0. The current weights have the values

shown. There are no weights on the inputs of neurons 1 and 2. (i) We feed the network with

the training instance 𝑥1 = 1, 𝑥2 = 1, for which the correct output is 𝑡 = – 1. What is the

output 𝑦 of the network? (ii) We use backpropagation, with update rule 𝑤𝑖𝑗 ← 𝑤𝑖𝑗 + 0.1 ·

 𝑥𝑖𝑗 · 𝛿𝑗. Assume that for the output neuron 𝛿6 = 𝑡 − 𝑦 and that for each hidden layer

neuron 𝛿𝑗 = ∑ 𝑤𝑗𝑘 · 𝛿𝑘. Compute the new weights.

1

2

3

4

5

6

x1

x2

y

w13=1

w14=−2

w15=1

w23=−2

w24=1

w25=1

w36=−1

w46=1

w56=2

Answer: (i) The output of the network is:

𝑦 = 𝛷(𝑤36𝑥36 + 𝑤46𝑥46 + 𝑤56𝑥56)

= 𝛷(𝑤36𝛷(𝑤13𝑥13 + 𝑤23𝑥23) + 𝑤46𝛷(𝑤14𝑥14 + 𝑤24𝑥24) + 𝑤56𝛷(𝑤15𝑥15 + 𝑤25𝑥25))

= 𝛷(𝑤36𝛷(𝑤13𝛷(𝑥1) + 𝑤23𝛷(𝑥2)) + 𝑤46𝛷(𝑤14𝛷(𝑥1) + 𝑤24𝛷(𝑥2))

+ 𝑤56𝛷(𝑤15𝛷(𝑥1) + 𝑤25𝛷(𝑥2)))

= 𝛷(−1 ∙ 𝛷(1 ∙ 1 + (−2) ∙ 1) + 1 ∙ 𝛷((−2) ∙ 1 + 1 ∙ 1) + 2 ∙ 𝛷(1 ∙ 1 + 1 ∙ 1))

= 𝛷(−𝛷(−1) + 𝛷(−1) + 2 ∙ 𝛷(2))

= 𝛷(1 − 1 + 2) = 𝛷(2) = 1

(ii) We first compute 𝛿𝑗 (𝑗 = 3,… ,6) :

𝛿6 = 𝑡 − 𝑦 = −1 − 1 = −2

𝛿3 = 𝑤36 ∙ 𝛿6 = (−1) ∙ (−2) = 2
𝛿4 = 𝑤46 ∙ 𝛿6 = 1 ∙ (−2) = −2
𝛿5 = 𝑤56 ∙ 𝛿6 = 2 ∙ (−2) = −4

We then compute the new weights:

𝑤13 ⟵ 𝑤13 + 0.1 ∙ 𝑥13 ∙ 𝛿3 = 1 + 0.1 ∙ 1 ∙ 2 = 1.2
𝑤14 ⟵ 𝑤14 + 0.1 ∙ 𝑥14 ∙ 𝛿4 = −2 + 0.1 ∙ 1 ∙ (−2) = −2.2

𝑤15 ⟵ 𝑤15 + 0.1 ∙ 𝑥15 ∙ 𝛿5 = 1 + 0.1 ∙ 1 ∙ (−4) = 0.6
𝑤23 ⟵ 𝑤23 + 0.1 ∙ 𝑥23 ∙ 𝛿3 = −2 + 0.1 ∙ 1 ∙ 2 = −1.8
𝑤24 ⟵ 𝑤24 + 0.1 ∙ 𝑥24 ∙ 𝛿4 = 1 + 0.1 ∙ 1 ∙ (−2) = 0.8
𝑤25 ⟵ 𝑤25 + 0.1 ∙ 𝑥25 ∙ 𝛿5 = 1 + 0.1 ∙ 1 ∙ (−4) = 0.6

𝑤36 ⟵ 𝑤36 + 0.1 ∙ 𝑥36 ∙ 𝛿6 = −1 + 0.1 ∙ (−1) ∙ (−2) = −0.8
𝑤46 ⟵ 𝑤46 + 0.1 ∙ 𝑥46 ∙ 𝛿6 = 1 + 0.1 ∙ (−1) ∙ (−2) = 1.2

𝑤56 ⟵ 𝑤56 + 0.1 ∙ 𝑥56 ∙ 𝛿6 = 2 + 0.1 ∙ 1 ∙ (−2) = 1.8

5. Show that without activation functions, a multi-layer neural network is equivalent to

applying a linear transformation to the input, i.e., the output can be written as �⃗� = 𝑊�⃗� + 𝑏,

where 𝑊 is a weights matrix, 𝑏 ∈ ℝ is a bias term, and �⃗�𝜖ℝ𝑛 is the input feature vector.

6. Derive the weight update rules of slide 21 (backpropagation for the MLP of slides 18–19).

Answer (based on section 4.5.2 of the book «Machine Learning» by T. Mitchell, 1997,
McGraw Hill – see Exercises 7 and 8 below for an alternative solution based on the

computation graph of the neural network):

Let 𝑊 be a single vector containing all the weights 𝑤𝑖,𝑗 (of all the layers) of the network,

where 𝑤𝑖,𝑗 denotes the weight of the connection from neuron 𝑖 to neuron 𝑗. Each time we

consider a training example, we compute the squared error loss for this particular example:

𝐸(𝑊) =
1

2
∑ (𝑡𝑘 − 𝑜𝑘)

2

𝑘∈𝑂𝑢𝑡𝑝𝑢𝑡𝑠

where 𝑂𝑢𝑡𝑝𝑢𝑡𝑠 is the set containing the output layer neurons (more precisely, the numbers

that we use to refer to the neurons of the output layer), 𝑜𝑘 is the output of neuron 𝑘, and 𝑡𝑘 is

the correct output for neuron 𝑘. We update 𝑊 (all the weights together) by taking a step

towards −𝛻𝐸(𝑊):

𝑊 ← 𝑊 − 𝜂𝛻𝐸(𝑊)

which means that we update the weights as follows:

〈… , 𝑤1,4,… ,𝑤𝑖,𝑗 , … ,𝑤4,8, … 〉 ← 〈… , 𝑤1,4, … ,𝑤𝑖,𝑗 , … ,𝑤4,8, … 〉

−𝜂 〈… ,
𝜕𝐸(𝑊)

𝜕𝑤1,4
, … ,

𝜕𝐸(𝑊)

𝜕𝑤𝑖,𝑗
 , … ,

𝜕𝐸(𝑊)

𝜕𝑤4,8
, … 〉

where 𝜂 is (in the simplest case) a small positive constant (e.g., 0.1).

Each weight 𝑤𝑖,𝑗 inside 𝑊 is modified as follows:

𝑤𝑖,𝑗 ← 𝑤𝑖,𝑗 − 𝜂
𝜕𝐸(𝑊)

𝜕𝑤𝑖,𝑗

Let 𝑠𝑗 = ∑ 𝑤𝑖′,𝑗𝑥𝑖′,𝑗𝑖′ = ∑ 𝑤𝑖′,𝑗𝑜𝑖′𝑖′ , where 𝑖′ ranges over the neurons that provide input to

neuron 𝑗 and 𝑜𝑖′ is the output of neuron 𝑖′, i.e., 𝑠𝑗 is the weighted sum of the inputs of neuron

𝑗, before applying the activation function. The weight 𝑤𝑖,𝑗 affects the outputs of the neurons of

the output layer, hence also the loss 𝐸(𝑊), only through 𝑠𝑗 (only by affecting 𝑠𝑗). Therefore,

using the chain rule of derivatives, we obtain:1

𝜕𝐸(𝑊)

𝜕𝑤𝑖,𝑗
=

𝜕𝐸(𝑊)

𝜕𝑠𝑗

𝜕𝑠𝑗

𝜕𝑤𝑖,𝑗

Hence:

𝑤𝑖,𝑗 ← 𝑤𝑖,𝑗 − 𝜂
𝜕𝐸(𝑊)

𝜕𝑠𝑗

𝜕𝑠𝑗

𝜕𝑤𝑖,𝑗
=

𝑤𝑖,𝑗 − 𝜂
𝜕𝐸(𝑊)

𝜕𝑠𝑗

𝜕∑ 𝑤𝑖′,𝑗𝑥𝑖′,𝑗𝑖′

𝜕𝑤𝑖,𝑗
= 𝑤𝑖,𝑗 − 𝜂

𝜕𝐸(𝑊)

𝜕𝑠𝑗
𝑥𝑖,𝑗

Case 1: If neuron 𝒋 is in the output layer, then 𝑠𝑗 affects the outputs of the neurons of the

output layer (actually, only the output of neuron 𝑗), hence also the loss 𝐸(𝑊), only through

𝑜𝑗 = 𝛷(𝑠𝑗), where 𝛷 is the activation function of neuron 𝑗. Therefore, using the chain rule,

we obtain:

𝜕𝐸(𝑊)

𝜕𝑠𝑗
=

𝜕𝐸(𝑊)

𝜕𝑜𝑗

𝜕𝑜𝑗

𝜕𝑠𝑗

Assuming that the activation function of neuron 𝑗 is the sigmoid, 𝛷(𝑠𝑗) = 𝜎(𝑠𝑗), we obtain:

𝜕𝐸(𝑊)

𝜕𝑠𝑗
=

𝜕

𝜕𝑜𝑗
(
1

2
∑ (𝑡𝑘 − 𝑜𝑘)

2

𝑘∈𝑂𝑢𝑡𝑝𝑢𝑡𝑠

)
𝜕𝜎(𝑠𝑗)

𝜕𝑠𝑗
=

1 Βλ. https://en.wikipedia.org/wiki/Chain_rule

https://en.wikipedia.org/wiki/Chain_rule

(∑
𝜕

𝜕𝑜𝑗
(
1

2
(𝑡𝑘 − 𝑜𝑘)

2)

𝑘∈𝑂𝑢𝑡𝑝𝑢𝑡𝑠

)𝜎(𝑠𝑗) (1 − 𝜎(𝑠𝑗)) =

(∑ (𝑡𝑘 − 𝑜𝑘)

𝑘∈𝑂𝑢𝑡𝑝𝑢𝑡𝑠

𝜕(𝑡𝑘 − 𝑜𝑘)

𝜕𝑜𝑗
)𝑜𝑗(1 − 𝑜𝑗) =

(𝑡𝑗 − 𝑜𝑗)(−1)𝑜𝑗(1 − 𝑜𝑗) = −(𝑡𝑗 − 𝑜𝑗)𝑜𝑗(1 − 𝑜𝑗)

Therefore, in this case (when neuron 𝑗 is in the output layer), the update rule is:

𝑤𝑖,𝑗 ← 𝑤𝑖,𝑗 + 𝜂 ((𝑡𝑗 − 𝑜𝑗)𝑜𝑗(1 − 𝑜𝑗)) 𝑥𝑖,𝑗

By setting 𝛿𝑗 = −
𝜕𝐸(𝑊)

𝜕𝑠𝑗
, the update rule of this case becomes:

𝑤𝑖,𝑗 ← 𝑤𝑖,𝑗 + 𝜂𝛿𝑗𝑥𝑖,𝑗

where:

𝛿𝑗 = (𝑡𝑗 − 𝑜𝑗)𝑜𝑗(1 − 𝑜𝑗)

Case 2: If neuron 𝒋 is in the hidden layer, then 𝑠𝑗 affects the outputs of the neurons of the

output layer, hence also the loss 𝐸(𝑊), only through the 𝑠𝑘 of each neuron 𝑘 ∈
𝐷𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚(𝑗) to which neuron 𝑗 provides (directly) input.2 Therefore, using the chain rule

and setting again 𝛿𝑘 = −
𝜕𝐸(𝑊)

𝜕𝑠𝑘
, we obtain:

𝜕𝐸(𝑊)

𝜕𝑠𝑗
= ∑

𝜕𝐸(𝑊)

𝜕𝑠𝑘

𝜕𝑠𝑘

𝜕𝑠𝑗
𝑘∈𝐷𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚(𝑗)

= ∑ −𝛿𝑘

𝜕𝑠𝑘

𝜕𝑠𝑗
𝑘∈𝐷𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚(𝑗)

𝑠𝑗 affects each 𝑠𝑘 only through 𝑜𝑗. Therefore, using the chain rule and assuming again that

neuron 𝑗 has a sigmoid activation function, i.e., 𝑜𝑗 = 𝜎(𝑠𝑗), we obtain:

𝜕𝐸(𝑊)

𝜕𝑠𝑗
= ∑ −𝛿𝑘

𝜕𝑠𝑘

𝜕𝑜𝑗
𝑘∈𝐷𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚(𝑗)

𝜕𝑜𝑗

𝜕𝑠𝑗
= ∑ −𝛿𝑘

𝜕 ∑ 𝑤𝑗′,𝑘𝑜𝑗′𝑗′

𝜕𝑜𝑗
𝑘∈𝐷𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚(𝑗)

𝜕𝑜𝑗

𝜕𝑠𝑗
=

∑ −𝛿𝑘𝑤𝑗,𝑘

𝑘∈𝐷𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚(𝑗)

𝜕𝜎(𝑠𝑗)

𝜕𝑠𝑗
= ∑ −𝛿𝑘𝑤𝑗,𝑘

𝑘∈𝐷𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚(𝑗)

𝜎(𝑠𝑗) (1 − 𝜎(𝑠𝑗)) =

∑ −𝛿𝑘𝑤𝑗,𝑘

𝑘∈𝐷𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚(𝑗)

𝑜𝑗(1 − 𝑜𝑗) = −𝑜𝑗(1 − 𝑜𝑗) ∑ 𝛿𝑘𝑤𝑗,𝑘

𝑘∈𝐷𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚(𝑗)

Therefore, in this case (when neuron 𝑗 is in the hidden layer), the update rule is:

2 In the network of slide 18, if neuron 𝑗 is in the single hidden layer and every neuron of the hidden

layer is connected to every neuron of the output layer, then 𝐷𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚(𝑗) = 𝑂𝑢𝑡𝑝𝑢𝑡𝑠. The notation

and update rules of this exercise, however, can also be used when there are multiple hidden layers.

𝑤𝑖,𝑗 ← 𝑤𝑖,𝑗 + 𝜂 (𝑜𝑗(1 − 𝑜𝑗) ∑ 𝛿𝑘𝑤𝑗,𝑘

𝑘∈𝐷𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚(𝑗)

)𝑥𝑖,𝑗

Since 𝛿𝑗 = −
𝜕𝐸𝑑(𝑊)

𝜕𝑛𝑒𝑡𝑗
, we can write again the update rule as:

𝑤𝑖,𝑗 ← 𝑤𝑖,𝑗 + 𝜂𝛿𝑗𝑥𝑖,𝑗

but in this case:

𝛿𝑗 = (𝑜𝑗(1 − 𝑜𝑗) ∑ 𝛿𝑘𝑤𝑗,𝑘

𝑘∈𝐷𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚(𝑗)

)

7. Confirm the computation of
𝜕𝐸

𝜕�⃗⃗�
 in the computation graph of slide 32.

Answer: The gradient that we need to compute is:

𝜕𝐸

𝜕�⃗�
=

[

𝜕𝐸

𝜕𝑜1…
𝜕𝐸

𝜕𝑜𝑖…
𝜕𝐸

𝜕𝑜𝑘]

Let us consider separately a single derivative
𝜕𝐸

𝜕𝑜𝑖
 (a single element of the gradient):

𝜕𝐸

𝜕𝑜𝑖
=

𝜕

𝜕𝑜𝑖
∑

1

2
(𝑡𝑗 − 𝑜𝑗)

2
𝑘

𝑗=1

=
𝜕

𝜕𝑜𝑖

1

2
(𝑡𝑖 − 𝑜𝑖)

2 =
1

2
∙ 2 ∙ (𝑡𝑖 − 𝑜𝑖) ∙

𝜕

𝜕𝑜𝑖
(𝑡𝑖 − 𝑜𝑖)

= (𝑡𝑖 − 𝑜𝑖) ∙ (−1) = (𝑜𝑖 − 𝑡𝑖)

Hence:

𝜕𝐸

𝜕�⃗�
=

[

𝜕𝐸

𝜕𝑜1…
𝜕𝐸

𝜕𝑜𝑖…
𝜕𝐸

𝜕𝑜𝑘]

=

[

𝑜1 − 𝑡1

…
𝑜𝑖 − 𝑡𝑖

…
𝑜𝑘 − 𝑡𝑘]

= �⃗� − 𝑡

Note: We do not need to compute
𝜕𝐸

𝜕𝑡
, because we do not update 𝑡 (the correct prediction).

8. (i) Draw the computation graph of the neural network of slides 18–19 (the one used in

exercise 6 above) and compute the gradient
𝜕𝐸

𝜕�⃗⃗�(2).

Answer: The graph is the same as in slide 32, but with an extra sigmoid before the squared

error loss. (We would use the extra sigmoid if we wanted each output of the network to
predict the probability that the input text belongs in the corresponding class, without the

classes being mutually exclusive; for mutually exclusive classes, we would use a softmax

instead of the extra sigmoid.) The gradient
𝜕𝐸

𝜕�⃗⃗�(2) was computed as in Exercise 7.

(ii) Show that for a sigmoid node 𝜎(𝑠) = �⃗�,
𝜕𝐸

𝜕𝑠
 can be computed as follows, where 𝐽 is the

Jacobian matrix.3

3 See https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant.

https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant

Answer: The gradient that we need to compute is:

𝜕𝐸

𝜕𝑠
=

[

𝜕𝐸

𝜕𝑠1

⋮
𝜕𝐸

𝜕𝑠𝑖

⋮
𝜕𝐸

𝜕𝑠𝑘]

Let us consider separately a single derivative
𝜕𝐸

𝜕𝑠𝑖
 (a single element of the gradient). By the

chain rule of derivatives, we obtain:

𝜕𝐸

𝜕𝑠𝑖
= ∑

𝜕𝐸

𝜕𝑜𝑗

𝜕𝑜𝑗

𝜕𝑠𝑖

𝑘

𝑗=1

However, each 𝑠𝑖 affects only 𝑜𝑖 = 𝜎(𝑠𝑖). It does not affect any other 𝑜𝑗 = 𝜎(𝑠𝑗), for 𝑗 ≠ 𝑖.

Hence,
𝜕𝑜𝑗

𝜕𝑠𝑖
= 0 for 𝑗 ≠ 𝑖, and we obtain:

𝜕𝐸

𝜕𝑠𝑖
=

𝜕𝐸

𝜕𝑜𝑖

𝜕𝑜𝑖

𝜕𝑠𝑖
=

𝜕𝐸

𝜕𝑜𝑖

𝜕𝜎(𝑠𝑖)

𝜕𝑠𝑖
=

𝜕𝐸

𝜕𝑜𝑖
𝜎(𝑠𝑖)(1 − 𝜎(𝑠𝑖))

where we have use the property of the sigmoid that
𝑑𝜎(𝑥)

𝑑𝑥
= 𝜎(𝑥)(1 − 𝜎(𝑥)).

Therefore:

𝜕𝐸

𝜕𝑠
=

[

𝜕𝐸

𝜕𝑠1

⋮
𝜕𝐸

𝜕𝑠𝑖

⋮
𝜕𝐸

𝜕𝑠𝑘]

=

[

𝜕𝐸

𝜕𝑜1

𝜕𝜎(𝑠1)

𝜕𝑠1

⋮
𝜕𝐸

𝜕𝑜𝑖

𝜕𝜎(𝑠𝑖)

𝜕𝑠𝑖

⋮
𝜕𝐸

𝜕𝑜𝑘

𝜕𝜎(𝑠𝑘)

𝜕𝑠𝑘]

=

[

𝜕𝐸

𝜕𝑜1
𝜎(𝑠1)(1 − 𝜎(𝑠1))

⋮
𝜕𝐸

𝜕𝑜𝑖
𝜎(𝑠𝑖)(1 − 𝜎(𝑠𝑖))

⋮
𝜕𝐸

𝜕𝑜𝑘
𝜎(𝑠𝑘)(1 − 𝜎(𝑠𝑘))]

The latter can also be written as:

𝜕𝐸

𝜕𝑠
=

[

𝜕𝜎(𝑠1)

𝜕𝑠1
0 … 0

0
𝜕𝜎(𝑠2)

𝜕𝑠2
… 0

⋮ ⋮ ⋮ ⋮

0 0 …
𝜕𝜎(𝑠𝑘)

𝜕𝑠𝑘]

[

𝜕𝐸

𝜕𝑜1

𝜕𝐸

𝜕𝑜2

⋮
𝜕𝐸

𝜕𝑜𝑘]

=

=

[

𝜎(𝑠1)(1 − 𝜎(𝑠1)) 0 … 0

0 𝜎(𝑠2)(1 − 𝜎(𝑠2)) … 0

⋮ ⋮ ⋮ ⋮
0 0 … 𝜎(𝑠𝑘)(1 − 𝜎(𝑠𝑘))]

𝜕𝐸

𝜕�⃗�

More generally, it can be written as:

𝜕𝐸

𝜕𝑠
=

[

𝜕𝜎(𝑠1)

𝜕𝑠1

𝜕𝜎(𝑠2)

𝜕𝑠1
…

𝜕𝜎(𝑠𝑘)

𝜕𝑠1

𝜕𝜎(𝑠1)

𝜕𝑠2

𝜕𝜎(𝑠2)

𝜕𝑠2
…

𝜕𝜎(𝑠𝑘)

𝜕𝑠2

⋮ ⋮ ⋮ ⋮
𝜕𝜎(𝑠1)

𝜕𝑠𝑘

𝜕𝜎(𝑠2)

𝜕𝑠𝑘
…

𝜕𝜎(𝑠𝑘)

𝜕𝑠𝑘]

[

𝜕𝐸

𝜕𝑜1

𝜕𝐸

𝜕𝑜2

⋮
𝜕𝐸

𝜕𝑜𝑘]

= 𝐽𝑇
𝜕𝐸

𝜕�⃗�

Where 𝐽 is the Jacobian matrix:

𝐽 =

[

𝜕𝜎(𝑠1)

𝜕𝑠1

𝜕𝜎(𝑠1)

𝜕𝑠2
…

𝜕𝜎(𝑠1)

𝜕𝑠𝑘

𝜕𝜎(𝑠2)

𝜕𝑠1

𝜕𝜎(𝑠2)

𝜕𝑠2
…

𝜕𝜎(𝑠2)

𝜕𝑠𝑘

⋮ ⋮ ⋮ ⋮
𝜕𝜎(𝑠𝑘)

𝜕𝑠1

𝜕𝜎(𝑠𝑘)

𝜕𝑠2
…

𝜕𝜎(𝑠𝑘)

𝜕𝑠𝑘]

The latter applies more generally. For a node that computes 𝑓(𝑠, …) = �⃗�, we can compute
𝜕𝐸

𝜕𝑠
 as follows (provided that 𝑠 is fed only to the 𝑓 node):

(Check that this is also true for
𝜕𝐸

𝜕�⃗⃗�
 in exercise 7.)

If 𝑠 is fed to two (or more) nodes 𝑓1, 𝑓2, we have to add the gradients for
𝜕𝐸

𝜕𝑠
 that we get from

𝑓1, 𝑓2:

(iii) Show that for a matrix-vector multiplication node 𝑊�⃗� = 𝑠,
𝜕𝐸

𝜕�⃗⃗�
 can be computed as

follows:

Answer:

𝑠 =

[

𝑠1

𝑠2

𝑠3

…
𝑠𝑘]

= 𝑊�⃗� =

[

𝑤1,1 𝑤2,1 … 𝑤𝑚,1

𝑤1,2 𝑤2,2 … 𝑤𝑚,2

𝑤1,3 𝑤2,3 … 𝑤𝑚,3

… … … …
𝑤1,𝑘 𝑤2,𝑘 … 𝑤𝑚,𝑘]

[

𝑜1

𝑜2

𝑜3

…
𝑜𝑚]

=

[

𝑤1,1𝑜1 + 𝑤2,1𝑜2 + ⋯+ 𝑤𝑚,1𝑜𝑚

𝑤1,2𝑜1 + 𝑤2,2𝑜2 + ⋯+ 𝑤𝑚,2𝑜𝑚

𝑤1,3𝑜1 + 𝑤2,3𝑜2 + ⋯+ 𝑤𝑚,3𝑜𝑚

…
𝑤1,𝑘𝑜1 + 𝑤2,𝑘𝑜 2 + ⋯+ 𝑤𝑚,𝑘𝑜𝑚]

The gradient that we need to compute is:

𝜕𝐸

𝜕�⃗�
=

[

𝜕𝐸

𝜕𝑜1

⋮
𝜕𝐸

𝜕𝑜𝑖

⋮
𝜕𝐸

𝜕𝑜𝑚]

Let us consider separately a single derivative
𝜕𝐸

𝜕𝑜𝑖
 (a single element of the gradient). By the

chain rule of derivatives, we obtain:

𝜕𝐸

𝜕𝑜𝑖
= ∑

𝜕𝐸

𝜕𝑠𝑗

𝜕𝑠𝑗
𝜕𝑜𝑖

𝑘

𝑗=1

According to the equations for 𝑠 = 𝑊�⃗� above:

𝑠𝑗 = 𝑤1,𝑗𝑜1 + 𝑤2,𝑗𝑜2 + ⋯+ 𝑤𝑖,𝑗𝑜𝑖 + ⋯ + 𝑤𝑚,𝑗𝑜𝑚

Hence:

𝜕𝑠𝑗
𝜕𝑜𝑖

= 𝑤𝑖,𝑗

Therefore:

𝜕𝐸

𝜕𝑜𝑖
= ∑

𝜕𝐸

𝜕𝑠𝑗

𝜕𝑠𝑗
𝜕𝑜𝑖

𝑘

𝑗=1

= ∑
𝜕𝐸

𝜕𝑠𝑗
𝑤𝑖,𝑗

𝑘

𝑗=1

which can also be written as:

𝜕𝐸

𝜕𝑜𝑖
= [

𝜕𝑠1

𝜕𝑜𝑖

𝜕𝑠2

𝜕𝑜𝑖
…

𝜕𝑠𝑘

𝜕𝑜𝑖
]

[

𝜕𝐸

𝜕𝑠1

𝜕𝐸

𝜕𝑠2

⋮
𝜕𝐸

𝜕𝑠𝑘]

= [𝑤𝑖,1 𝑤𝑖,2 … 𝑤𝑖,𝑘]

[

𝜕𝐸

𝜕𝑠1

𝜕𝐸

𝜕𝑠2

⋮
𝜕𝐸

𝜕𝑠𝑘]

Hence, for the overall gradient:

𝜕𝐸

𝜕�⃗�
=

[

𝜕𝐸

𝜕𝑜1

𝜕𝐸

𝜕𝑜2

⋮
𝜕𝐸

𝜕𝑜𝑖

⋮
𝜕𝐸

𝜕𝑜𝑚]

=

[

𝜕𝑠1

𝜕𝑜1

𝜕𝑠2

𝜕𝑜1
…

𝜕𝑠𝑘

𝜕𝑜1

𝜕𝑠1

𝜕𝑜2

𝜕𝑠2

𝜕𝑜2
…

𝜕𝑠𝑘

𝜕𝑜2

⋮ ⋮ ⋮ ⋮
𝜕𝑠1

𝜕𝑜𝑖

𝜕𝑠2

𝜕𝑜𝑖
…

𝜕𝑠𝑘

𝜕𝑜𝑖

⋮ ⋮ ⋮ ⋮
𝜕𝑠1

𝜕𝑜𝑚

𝜕𝑠2

𝜕𝑜𝑚
…

𝜕𝑠𝑘

𝜕𝑜𝑚]

[

𝜕𝐸

𝜕𝑠1

𝜕𝐸

𝜕𝑠2

⋮
𝜕𝐸

𝜕𝑠𝑘]

=

[

𝑤1,1 𝑤1,2 … 𝑤1,𝑘

𝑤2,1 𝑤2,2 … 𝑤2,𝑘

⋮ ⋮ ⋮ ⋮
𝑤𝑖,1 𝑤𝑖,2 … 𝑤𝑖,𝑘

⋮ ⋮ ⋮ ⋮
𝑤𝑚,1 𝑤𝑚,2 … 𝑤𝑚,𝑘]

[

𝜕𝐸

𝜕𝑠1

𝜕𝐸

𝜕𝑠2

⋮
𝜕𝐸

𝜕𝑠𝑘]

=

𝐽�⃗⃗�
𝑇 𝜕𝐸

𝜕𝑠
= 𝑊𝑇

𝜕𝐸

𝜕𝑠

Note: We prefer to use matrix operators, which can be efficiently computed using highly

optimized algorithms and GPUs, rather than relying on our own for-loops (e.g., in our own

Python scripts) to compute individual elements of matrices, which is much slower.

(iv) Show that for a matrix-vector multiplication node 𝑊�⃗� = 𝑠,
𝜕𝐸

𝜕𝑊
=

𝜕𝐸

𝜕𝑠
⊗ �⃗�, where ⊗

denotes the outer product.4

Answer: Recall that we use the following notation for the elements of 𝑊:

𝑊 =

[

𝑤1,1 𝑤2,1 … 𝑤𝑚,1

𝑤1,2 𝑤2,2 … 𝑤𝑚,2

𝑤1,3 𝑤2,3 … 𝑤𝑚,3

… … … …
𝑤1,𝑘 𝑤2,𝑘 … 𝑤𝑚,𝑘]

The gradient that we need to compute is:

𝜕𝐸

𝜕𝑊
=

[

𝜕𝐸

𝜕𝑤1,1

𝜕𝐸

𝜕𝑤2,1
…

𝜕𝐸

𝜕𝑤𝑚,1

𝜕𝐸

𝜕𝑤1,2

𝜕𝐸

𝜕𝑤2,2
…

𝜕𝐸

𝜕𝑤𝑚,2

𝜕𝐸

𝜕𝑤1,3

𝜕𝐸

𝜕𝑤2,3
…

𝜕𝐸

𝜕𝑤𝑚,3
… … … …
𝜕𝐸

𝜕𝑤1,𝑘

𝜕𝐸

𝜕𝑤2,𝑘
…

𝜕𝐸

𝜕𝑤𝑚,𝑘]

Let us consider separately a single derivative
𝜕𝐸

𝜕𝑤𝑖,𝑗
 (a single element of the gradient). By the

chain rule of derivatives, we obtain:

𝜕𝐸

𝜕𝑤𝑖,𝑗
= ∑

𝜕𝐸

𝜕𝑠𝑙

𝜕𝑠𝑙

𝜕𝑤𝑖,𝑗

𝑘

𝑙=1

According to the equations for 𝑠 = 𝑊�⃗� in part (iii) of the exercise:

𝑠𝑙 = 𝑤1,𝑙𝑜1 + 𝑤2,𝑙𝑜2 + ⋯+ 𝑤𝑖,𝑙𝑜𝑖 + ⋯ + 𝑤𝑚,𝑙𝑜𝑚

4 See https://en.wikipedia.org/wiki/Matrix_multiplication#Outer_product.

https://en.wikipedia.org/wiki/Matrix_multiplication#Outer_product

Hence:
𝜕𝑠𝑙

𝜕𝑤𝑖,𝑗
= 0, for 𝑙 ≠ 𝑗

and:

𝜕𝐸

𝜕𝑤𝑖,𝑗
= ∑

𝜕𝐸

𝜕𝑠𝑙

𝜕𝑠𝑙

𝜕𝑤𝑖,𝑗

𝑘

𝑙=1

=
𝜕𝐸

𝜕𝑠𝑗

𝜕𝑠𝑗
𝜕𝑤𝑖,𝑗

Given that:

𝑠𝑗 = 𝑤1,𝑗𝑜1 + 𝑤2,𝑗𝑜2 + ⋯+ 𝑤𝑖,𝑗𝑜𝑖 + ⋯ + 𝑤𝑚,𝑗𝑜𝑚

we obtain:

𝜕𝑠𝑗

𝜕𝑤𝑖,𝑗
= 𝑜𝑖

Hence:

𝜕𝐸

𝜕𝑤𝑖,𝑗
=

𝜕𝐸

𝜕𝑠𝑗

𝜕𝑠𝑗

𝜕𝑤𝑖,𝑗
=

𝜕𝐸

𝜕𝑠𝑗
𝑜𝑖

Going back to the overall gradient:

𝜕𝐸

𝜕𝑊
=

[

𝜕𝐸

𝜕𝑤1,1

𝜕𝐸

𝜕𝑤2,1
…

𝜕𝐸

𝜕𝑤𝑚,1

𝜕𝐸

𝜕𝑤1,2

𝜕𝐸

𝜕𝑤2,2
…

𝜕𝐸

𝜕𝑤𝑚,2

𝜕𝐸

𝜕𝑤1,3

𝜕𝐸

𝜕𝑤2,1
…

𝜕𝐸

𝜕𝑤𝑚,3

⋮ ⋮ ⋮ ⋮
𝜕𝐸

𝜕𝑤1,𝑘

𝜕𝐸

𝜕𝑤2,𝑘
…

𝜕𝐸

𝜕𝑤𝑚,𝑘]

=

[

𝜕𝐸

𝜕𝑠1
𝑜1

𝜕𝐸

𝜕𝑠1
𝑜2 …

𝜕𝐸

𝜕𝑠1
𝑜𝑚

𝜕𝐸

𝜕𝑠2
𝑜1

𝜕𝐸

𝜕𝑠2
𝑜2 …

𝜕𝐸

𝜕𝑠2
𝑜𝑚

𝜕𝐸

𝜕𝑠3
𝑜1

𝜕𝐸

𝜕𝑠3
𝑜2 …

𝜕𝐸

𝜕𝑠3
𝑜𝑚

⋮ ⋮ ⋮ ⋮
𝜕𝐸

𝜕𝑠𝑘
𝑜1

𝜕𝐸

𝜕𝑠𝑘
𝑜2 …

𝜕𝐸

𝜕𝑤𝑠𝑘

𝑜𝑚
]

=

=

[

𝜕𝐸

𝜕𝑠1

𝜕𝐸

𝜕𝑠2

𝜕𝐸

𝜕𝑠3

⋮
𝜕𝐸

𝜕𝑠𝑘]

[𝑜1 𝑜2 … 𝑜𝑚] =
𝜕𝐸

𝜕𝑠
⊗ �⃗�

(v) Use the conclusions of parts (i)–(iv) of this exercise, to derive the backpropagation update

rules for 𝑊(1) and 𝑊(2). Confirm that they are the same as the ones derived in Exercise 6

(also shown on slide 21).

Answer: For the weights of 𝑊(2) of the computation graph of part (i), i.e., for each weight

𝑤𝑖,𝑗
(2)

 from a neuron 𝑖 of the hidden layer to a neuron 𝑗 of the output layer in the network of

slides 18–19, we have shown in part (iv) that:

𝜕𝐸

𝜕𝑤𝑖,𝑗
(2)

=
𝜕𝐸

𝜕𝑠𝑗
(2)

𝜕𝑠𝑗
(2)

𝜕𝑤𝑖,𝑗
(2)

=
𝜕𝐸

𝜕𝑠𝑗
(2)

𝑜𝑖
(1)

From part (ii), we also know that:

𝜕𝐸

𝜕𝑠𝑗
(2)

=
𝜕𝐸

𝜕𝑜𝑗
(2)

𝜕𝑜𝑗
(2)

𝜕𝑠𝑗
(2)

=
𝜕𝐸

𝜕𝑜𝑗
(2)

𝜕𝜎 (𝑠𝑗
(2)

)

𝜕𝑠𝑗
(2)

=
𝜕𝐸

𝜕𝑜𝑗
(2)

𝜎 (𝑠𝑗
(2)

) (1 − 𝜎 (𝑠𝑗
(2)

))

Hence:

𝜕𝐸

𝜕𝑤𝑖,𝑗
(2)

=
𝜕𝐸

𝜕𝑠𝑗
(2)

𝑜𝑖
(1)

=
𝜕𝐸

𝜕𝑜𝑗
(2)

𝜎 (𝑠𝑗
(2)

) (1 − 𝜎 (𝑠𝑗
(2)

))𝑜𝑖
(1)

=
𝜕𝐸

𝜕𝑜𝑗
(2)

𝑜𝑗
(2)

(1 − 𝑜𝑗
(2)

)𝑜𝑖
(1)

From part (i) (and Exercise 7) we also know that:

𝜕𝐸

𝜕𝑜
𝑗
(2)

= 𝑜𝑗
(2)

− 𝑡𝑗

Hence:

𝜕𝐸

𝜕𝑤
𝑖,𝑗
(2)

=
𝜕𝐸

𝜕𝑜
𝑗
(2)

𝑜𝑗
(2)

(1 − 𝑜𝑗
(2)

)𝑜𝑖
(1)

= (𝑜𝑗
(2)

− 𝑡𝑗) 𝑜𝑗
(2)

(1 − 𝑜𝑗
(2)

) 𝑜𝑖
(1)

= (𝑜𝑗
(2)

− 𝑡𝑗) 𝑜𝑗
(2)

(1 − 𝑜𝑗
(2)

)𝑥𝑖,𝑗

where 𝑥𝑖,𝑗 = 𝑜𝑖
(1)

 is the signal from neuron 𝑖 of the hidden layer to a neuron 𝑗 of the output

layer.

Therefore, the update rule for 𝑤𝑖,𝑗
(2)

 is:

𝑤𝑖,𝑗
(2)

← 𝑤𝑖,𝑗
(2)

− 𝜂
𝜕𝐸

𝜕𝑤𝑖,𝑗
(2)

= 𝑤𝑖,𝑗
(2)

− 𝜂 (𝑜𝑗
(2)

− 𝑡𝑗) 𝑜𝑗
(2)

(1 − 𝑜𝑗
(2)

) 𝑥𝑖,𝑗 =

= 𝑤𝑖,𝑗
(2)

+ 𝜂 (𝑡𝑗 − 𝑜𝑗
(2)

) 𝑜𝑗
(2)

(1 − 𝑜𝑗
(2)

) 𝑥𝑖,𝑗

which is the same as the update rule of Exercise 6 (and slide 21).

Let us now compute the update rule for the weights 𝑊(1) of the computation graph of part (i),

i.e., for each weight 𝑤𝑖,𝑗
(1)

 from a neuron 𝑖 of the input layer (that simply copies the input 𝑥𝑖)

to a neuron 𝑗 of the hidden layer in the network of slides 18–19. By reusing our conclusions of
part (iv) for a matrix-vector multiplication node of the computation graph, we obtain:

𝜕𝐸

𝜕𝑤𝑖,𝑗
(1)

=
𝜕𝐸

𝜕𝑠𝑗
(1)

𝜕𝑠𝑗
(1)

𝜕𝑤𝑖,𝑗
(1)

=
𝜕𝐸

𝜕𝑠𝑗
(1)

𝑥𝑖 =
𝜕𝐸

𝜕𝑠𝑗
(1)

𝑥𝑖,𝑗

By reusing our conclusions of part (ii) for a sigmoid node of the computation graph, we also

obtain:

𝜕𝐸

𝜕𝑠𝑗
(1)

=
𝜕𝐸

𝜕𝑜𝑗
(1)

𝜕𝑜𝑗
(1)

𝜕𝑠𝑗
(1)

=
𝜕𝐸

𝜕𝑜𝑗
(1)

𝜕𝜎 (𝑠𝑗
(1)

)

𝜕𝑠𝑗
(1)

=
𝜕𝐸

𝜕𝑜𝑗
(1)

𝜎 (𝑠𝑗
(1)

) (1 − 𝜎 (𝑠𝑗
(1)

))

Hence:

𝜕𝐸

𝜕𝑤𝑖,𝑗
(1)

=
𝜕𝐸

𝜕𝑠𝑗
(1)

𝑥𝑖,𝑗 =
𝜕𝐸

𝜕𝑜𝑗
(1)

𝜎 (𝑠𝑗
(1)

) (1 − 𝜎 (𝑠𝑗
(1)

))𝑥𝑖,𝑗 =
𝜕𝐸

𝜕𝑜𝑗
(1)

𝑜𝑗
(1)

(1 − 𝑜𝑗
(1)

)𝑥𝑖,𝑗

By applying our conclusions of part (iii) to the rightmost matrix-vector multiplication node of

the computation graph, we obtain:

𝜕𝐸

𝜕𝑜𝑗
(1)

= ∑
𝜕𝐸

𝜕𝑠𝑘
(2)

𝜕𝑠𝑘
(2)

𝜕𝑜𝑗
(1)

𝑘

= ∑
𝜕𝐸

𝜕𝑠𝑘
(2)

𝑤𝑗,𝑘
(2)

𝑘

Hence:

𝜕𝐸

𝜕𝑤𝑖,𝑗
(1)

=
𝜕𝐸

𝜕𝑜𝑗
(1)

𝑜𝑗
(1)

(1 − 𝑜𝑗
(1)

)𝑥𝑖,𝑗 = (∑
𝜕𝐸

𝜕𝑠𝑘
(2)

𝑤𝑗,𝑘
(2)

𝑘

)𝑜𝑗
(1)

(1 − 𝑜𝑗
(1)

) 𝑥𝑖,𝑗

By setting 𝛿𝑘 = −
𝜕𝐸

𝜕𝑠𝑘
(2) as in Exercise 6, we obtain:

𝜕𝐸

𝜕𝑤𝑖,𝑗
(1)

= (∑
𝜕𝐸

𝜕𝑠𝑘
(2)

𝑤𝑗,𝑘
(2)

𝑘

)𝑜𝑗
(1)

(1 − 𝑜𝑗
(1)

)𝑥𝑖,𝑗 = − (∑𝛿𝑘𝑤𝑗,𝑘
(2)

𝑘

)𝑜𝑗
(1)

(1 − 𝑜𝑗
(1)

) 𝑥𝑖,𝑗

Therefore, the update rule for 𝑤𝑖,𝑗
(1)

 is:

𝑤𝑖,𝑗
(1)

← 𝑤𝑖,𝑗
(1)

− 𝜂
𝜕𝐸

𝜕𝑤𝑖,𝑗
(1)

= 𝑤𝑖,𝑗
(1)

+ 𝜂 (∑𝛿𝑘𝑤𝑗,𝑘
(2)

𝑘

)𝑜𝑗
(1)

(1 − 𝑜𝑗
(1)

) 𝑥𝑖,𝑗

which is the same as the update rule of Exercise 6 (and slide 21).

9. By working as in parts (i)–(iv) of Exercise 8 on the computation graph (not as in Exercise

6), derive the update rules for the weights 𝑊(1) and 𝑊(2) of the network of slide 32 (the same

network as in Exercise 8, but without the rightmost sigmoid). You may use a sigmoid instead

of tanh in the network of slide 32. You may reuse the conclusions of Exercises 7 and 8 for the

backpropagation of gradients through matrix-vector multiplication, sigmoid, and squared

error loss nodes.

10. Repeat Exercise 17 of Part 2 (Text Classification), now using a neural network (e.g.,

MLP, RNN, CNN), implemented using tools like Keras, TensorFlow, PyTorch, or DyNet.5

5 See http://keras.io/, https://www.tensorflow.org/, http://web.stanford.edu/class/cs20si/,

http://pytorch.org/. http://dynet.io/.

http://keras.io/
https://www.tensorflow.org/
http://web.stanford.edu/class/cs20si/
http://pytorch.org/
http://dynet.io/

