
 

 

Exercises on “Sequence Labeling” 
 

Ion Androutsopoulos, 2017–18 (last revision 22/2/18) 

 

Submit as a group of 3–4 members a report (max. 5 pages, PDF format) for exercise 3 or 

exercise 4 (only one exercise per group). Include in your report all the required 

information, especially experimental results. Do not include code in the report, but 

include a link to a shared folder or repository (e.g. in Dropbox, GitHub, Bitbucket) 

containing your code. 

 

1. We wish to use a second order HMM to construct a POS tagger. Assume that 
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, where w are the words, t are the 

tags, 1 0,w w  are two pseudo-words at the beginning of each word sequence, and 1 0,t t  are the 

pseudo-tags of 1 0,w w .  

 

(i) Draw a diagram like the one of slide 15 to show the lattice of the Viterbi decoder in this 

case. Assume that each node of the lattice has a label 1i it t , where it  is the tag of the current 

word and 1it   is the tag of the previous word (see also slide 18).  

 

Answer: 

 

 
 

(ii) Write the formulae to compute 1( )i i iV t t  at each node 1i it t  of each 𝑗-th column of the 

lattice. Show in detail how the formulae are derived (as in slides 15 and 16). 

 

Answer: 
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where we set: 
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We observe that: 
 

𝑉𝑘(𝑡𝑘−1𝑡𝑘) = 
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Similarly, for 𝑗 = 2, … , 𝑘: 

 

𝑉𝑗(𝑡𝑗−1𝑡𝑗) = 𝑃(𝑤𝑗|𝑡𝑗) ∙ max
𝑡𝑗−2

𝑃(𝑡𝑗|𝑡𝑗−2𝑡𝑗−1) ∙ 𝑉𝑗−1(𝑡𝑗−2𝑡𝑗−1) 

 

Using the previous recursive formula, we can compute 𝑉𝑗(𝑡𝑗−1𝑡𝑗) at each node 𝑡𝑗−1𝑡𝑗 of each 

column of the lattice that corresponds to step 𝑗, having first computed the values 𝑉1(𝑡0𝑡1) of 

the first column as follows: 

 

𝑉1(𝑡0𝑡1) = 𝑃(𝑡1|𝑡−1𝑡0) ∙ 𝑃(𝑤1|𝑡1) 
 

   

2. Modify the MEMM of slides 28–31, so that each tag will depend on the tags of the two 

previous words and the feature vector of the current word.  

 

(i) Draw the new lattice of the Viterbi decoder (slide 31). 

 

(ii) Derive the new formulae to compute 𝑉𝑗(𝑡𝑗−1𝑡𝑗) at each node 𝑡𝑗−1𝑡𝑗 of each each 𝑗-th 

column of the lattice (slides 28–30). 

 

3. We wish to use a Viterbi decoder to find the most probable correct words �̂�1
𝑘 in slide 32 

(generalization for type-2 errors) of Part 1 (n-gram language models, spelling correction, and 

text normalization). Use a bigram (or optionally trigram) language model. 

 

(i) Draw the lattice of the Viterbi decoder in this case. What would the nodes of the lattice in 

each column stand for?  

 

(ii) Write down the formulae to compute 𝑉𝑗(𝑡𝑗) (or 𝑉𝑗(𝑡𝑗−1𝑡𝑗), if you use a trigram language 

model) at each node of each column of the lattice. Explain how you obtained the formulae. 

 

(iii) Extend the code you wrote for exercise 4 (language model) of Part 1 to develop a 

context-sensitive spelling corrector (for both type-1 and type-2 errors) that uses Levenshtein 

distance, a bigram (or optionally trigram) language model, and a Viterbi decoder. Train the 

language model of your spelling corrector as in exercise 4 of Part 1. You may use an existing 

implementation of Levenshtein distance. 

 

(iv) Introduce random spelling errors in the test dataset that you used in exercise 4 of Part 1, 

by randomly replacing characters and/or entire words by randomly selected ones. Report in 

detail how you constructed the new test dataset (that contains spelling errors) and provide 

appropriate statistics (e.g., number of characters and tokens in the new test dataset, percentage 

of wrong characters and tokens). Devise appropriate evaluation measures and baselines. Use 

them to evaluate your context-sensitive spelling corrector on the new test dataset. Report your 

evaluation measures, baselines, and evaluation results. 

 



 

 

4. Develop a POS tagger for one of the languages of the Universal Dependencies treebanks 

(http://universaldependencies.org/), using an HMM, MEMM, or CRF model (see optional 

material on CRFs). Consider only the words, sentences, and POS tags of the treebanks (not 

the dependencies or other annotations). You may use existing HMM, MEMM, or CRF 

implementations or your own implementations. You may use (in MEMM or CRF) any types 

of word features you prefer. Draw learning curves with appropriate measures (e.g., overall 

accuracy, possibly also F1 separately per POS). Include experimental results of appropriate 

baselines (e.g., always tagging each word with the most frequent tag it had in the training set). 

Make sure that you use separate training and test data. Tune the feature set and hyper-

parameters on a held-out part of the training data or using a cross-validation on the training 

data. Document clearly in a short report (max. 5 pages) how your system works (e.g., what 

algorithms it uses, examples of input/output), its experimental results (e.g., learning curves), 

and the most frequent types of mistakes it makes. 

 

5. (i) What is the time complexity of a brute-force decoder in the HMM POS-tagger of slide 

14, if the tagset contains 𝑇 tags and the input sentence consists of 𝑘 words? (ii) What is the 

time complexity when using a Viterbi decoder?  

 

6.  For some words (e.g., prepositions, the) there is (almost always) only one possible tag. 

How could the lattice of slide 17 and the Viterbi decoding formulae be modified to take 

advantage of this observation?  

 

http://universaldependencies.org/

