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INTRODUCTION 

In natural language processing, a common task is to assign a label to each word. In this 
assignment, the labels we assign are part of speech tags. More specifically, given a sentence we 
assign a part-of-speech (POS) tag (noun, verb, etc.) to each word. This task becomes 
complicated due to the fact that some words are ambiguous: for example, short can be an 
adjective (short vowel), a noun (direct a short), an adverb (to throw a ball short) or a verb (to short 
an appliance).  So, figuring out which POS is the correct one depends on the context, including 
the POS tags of the neighboring words. In order to classify each word to a tag we will use a 
baseline classifier, Hidden Markov Models (HMMs) and Conditional Random Fields (CRFs). 
 
The python code is available in the following link: https://thinkingtea.github.io/repoTEA/ 

DATA DESCRIPTION 

The data used to train and test the classifiers are in the form of treebanks. In linguistics, a treebank 
is a parsed text corpus that annotates syntactic or semantic sentence structure. For example, a 
sentence in a tree bank is presented as follows: 

As tags we consider the fourth “column” (i.e. the xpostag) of the assumed “table” formed above.  
 

DATA PRE-PROSSESING 

In order to use the aforementioned classifiers, we need to transform the data in an appropriate form. 
Firstly, we read the file which includes the tree banks (.conllu files) using the conllu library. We split 
the file using the new line character. We remove lines which start with the pattern '# sent_id' and '# 
newdoc id'. The line which starts with the pattern '# text' includes the whole sentence which we use 
as key in the dictionary. During parsing the files with the conllu library we bump into issues with 
specific tokens. To cope with this problem, we read the tokens manually and characterize them with 
their POS tag. The above issue appears in 30 tokens in both training and test set. 

  
After parsing the files, we construct two dictionaries, one for the test set and the other for the training 
set. The dictionaries have the whole sentence as key and a list of tuples as a value. On the first 
position of each tuple there is a token and on the second its POS tag.  
 
 
 

 

 

POS TAGGERS 

As mentioned above we will use 3 classifiers to find the corresponding tags for each word. 
 

https://thinkingtea.github.io/repoTEA/


Baseline approach 
The baseline algorithm is the simplest approach to classify tokens to tags. More specifically we find 
for each token the most frequent tag and store it in a dictionary (token is the key, tag is the value). 
Therefore, for each token in our test set we find the corresponding tag from that dictionary and classify 
it accordingly. We also find the most frequent tag of the training set and assign it to tokens that we 
have no information about as they do not appear in our training set. In our case the most frequent 
POS tag is “NN”. 
 
HMMs 
The Hidden Markov Model (HMM) is a powerful statistical tool for modeling generative sequences 
that can be characterized by an underlying process generating an observable sequence. HMMs have 
found application in many areas interested in signal processing, and in particular speech processing, 
but have also been applied with success to low level NLP tasks such as part-of-speech tagging, 
phrase chunking, and extracting target information from documents. The state is directly visible to the 
observer, and therefore the state transition probabilities are the only parameters, while in the hidden 
Markov model, the state is not directly visible, but the output (in the form of data or "token" in the 
following), dependent on the state, is visible. Each state has a probability distribution over the possible 
output tokens. Therefore, the sequence of tokens generated by an HMM gives some information 
about the sequence of states, this is also known as pattern theory, a topic of grammar introduction. 
 
CRFs 
Conditional random fields (CRFs) are a probabilistic framework for labeling and segmenting structured 
data, such as sequences, trees and lattices. The underlying idea is that of defining a conditional 
probability distribution over label sequences given a particular observation sequence, rather than a 
joint distribution over both label and observation sequences. The primary advantage of CRFs over 
Hidden Markov models is their conditional nature, resulting in the relaxation of the independence 
assumptions required by HMMs in order to ensure tractable inference. According to research results, 
CRFs outperform HMMs on several real-world tasks in many fields, including bioinformatics, 
computational linguistics and speech recognition. Another advantage of CRFs over HMMs is that they 
use as input multiple features instead of just a token. In our case we extracted information about word 
identity, word suffix and word shape and formed a feature vector. 

 

EVALUATION METRICS 

In order to evaluate the results of the multiple classifiers and therefore compare their performance we 
need to implement appropriate measures. The metrics that can holistically evaluate performance are 
accuracy, recall, precision and F1-score (produced by both recall and precision). In this problem 
except from comparing the classifiers we are interested in deciding whether collecting more training 
instances will improve performance of the classifiers. For that reason, we also construct learning 
curves based on accuracy and on F1-score. 
  
Accuracy is the number of correct predictions made divided by the total number of predictions made, 
multiplied by 100 to turn it into a percentage. 
  
Precision is the number of True Positives divided by the number of True Positives and False 
Positives. Precision can be thought of as a measure of a classifier’s exactness. A low precision can 
also indicate a large number of False Positives. 
  
Recall is the number of True Positives divided by the number of True Positives and the number of 
False Negatives. Put another way it is the number of positive predictions divided by the number of 
positive class values in the test data. It is also called Sensitivity or the True Positive Rate. Recall can 
be thought of as a measure of a classifiers completeness. A low recall indicates many False 
Negatives. 



F1-score is the 2*((precision*recall) / (precision + recall)). Put another way, the F1 score conveys the 
balance between the precision and the recall. 
  
Learning Curve is the representation in graph form of the rate of learning something over time or 
repeated experiences. In a text classification problem, a learning curve shows whether collecting more 
training instances will improve the performance of the classifier both in training and test set. It is 
important to note that learning curve is not useful for model assessment. 

EXPERIMENTAL RESULTS 

HMMs 
The following graphs show the learning curves with the average F1-score and accuracy for the HMMs 
POS tagger. 
 

 
Then, we indicatively present two learning curves from the total forty-nine learning curves, which 
depict F1-score separately per POS. The rest learning curves are available in the source code.   
 

  

https://thinkingtea.github.io/repoTEA/sequence_labeling/sequenceLabeling_Notebook.html


CRFs 
The following graphs show the learning curves with the average F1-score and accuracy for the CRFs 
POS tagger. 

 

 
Then, we indicatively present two learning curves from the total forty-nine learning curves, which 
depict F1-score separately per POS. The rest learning curves are available in the source code.   

 
Baseline 
The following graphs show the learning curves with the average F1-score and accuracy for the 
baseline POS tagger. 

 

 
Then, we indicatively present two learning curves from the total forty-nine learning curves, which 
depict F1-score separately per POS. The rest learning curves are available in the source code.   
 

https://thinkingtea.github.io/repoTEA/sequence_labeling/sequenceLabeling_Notebook.html
https://thinkingtea.github.io/repoTEA/sequence_labeling/sequenceLabeling_Notebook.html


 

CONCLUSIONS 

While comparing the baseline approach with HMM and CRFs we observe that HMM does not perform 
better. On the contrary, CRFs perform significantly well because as mentioned in the theory that 
approach takes into account previous words and uses features instead of just tokens. 
 
More analytically, for the Baseline tagger the performance on the test set is: 
Average Accuracy: 0.83835 
Average F1-score: 0.83534 
 
For the HMM tagger the performance on the test set is: 
Average Accuracy: 0.56447  
Average F1-score: 0.63918 
 
For the CRF tagger the performance on the test set is: 
Average Accuracy: 0.92763 
Average F1-score: 0.92764 
 
 
 
 
 


